NetworkX入门教程
诸神缄默不语-个人CSDN博文目录 NetworkX是复杂网络研究领域中的常用Python包。本文旨在通过介绍NetworkX中常用的方法等内容,为新手提供一个Networ
诸神缄默不语-个人CSDN博文目录
NetworkX是复杂网络研究领域中的常用Python包。本文旨在通过介绍NetworkX中常用的方法等内容,为新手提供一个NetworkX的入门教程。 官方文档地址
文章目录
1. Graph Types2. 图数据的创建、属性与常用方法3. 除文中已列出的NetworkX官方文档外,其他使用到的参考资料
1. Graph Types
Graph Types文档
允许以可哈希的object作为节点,任何Python object作为边属性。
如何选择使用哪种图:
2. 图数据的创建、属性与常用方法
Graph文档
创建一个空的图
无向图:G = nx.Graph()有向图:DG = nx.DiGraph() 将有向图转换为无向图:G = nx.Graph(DG)图是否有向:G.is_directed() 返回布尔值添加节点
直接添加一个节点(任何object都可以作为节点,包括另一个图)G.add_node(1) G.add_node(DG) https://networkx.org/documentation/stable/reference/classes/generated/networkx.Graph.add_node.html 第一个参数是节点,后面的参数都是节点的属性,用键值对的形式存取。具体的使用可以见下文介绍节点属性的部分:G.add_node(1, size=10)
G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
从任何容器加点:a list, dict, set or even the lines from a file or the nodes from another graph G.add_nodes_from() 或 nx.path_graph() path_graph()文档(相当于生成一条线)
添加节点 示例代码:
G.add_nodes_from([2, 3])
G.add_nodes_from(range(100, 110))
H = nx.path_graph(10)
G.add_nodes_from(H)
G.add_node('spam') # adds node "spam"
G.add_nodes_from('spam') # adds 4 nodes: 's', 'p', 'a', 'm'
添加边
添加一条边 G.add_edge(u, v)添加一个边的列表 G.add_edges_from([(1, 2), (1, 3)])添加一个边的collection G.add_edges_from(H.edges)如果添加的边的点不存在于图中,会自动添上相应节点而不报错 属性attribute
图的节点/边/图都可以在关联的attribute字典中以键值对key/value形式存储attribute(key一定要是可哈希的)默认情况下属性字典是空的可以通过 add_edge() add_node() 方法或直接操作分别名为graph edges nodes的属性字典来进行操作
示例代码:图 创建带属性的图
G = nx.Graph(day="Friday")
G.graph #输出:{'day': 'Friday'}
为图赋属性(也是修改属性的方法)
G = nx.Graph()
G.graph["Name"] = "Bar"
print(G.graph) #输出:{'Name': 'Bar'}
示例代码:节点 创建含属性的节点,为节点赋属性、删除节点属性,迭代输出节点及其属性数据
G.add_node(1, time="5pm")
G.add_nodes_from([3], time="2pm")
G.nodes[1] #输出:{'time': '5pm'}
G.nodes[1]["room"] = 714 # node must exist already to use G.nodes
del G.nodes[1]["room"] # remove attribute
list(G.nodes(data=True)) #输出:[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
list(G) #G也可以作为G节点的迭代器
添加多个带属性节点
# Add multiple nodes with attributes
G.add_nodes_from([
(1, {"feature": 1, "label": 1}),
(2, {"feature": 2, "label": 2})
])
示例代码:边 添加带属性的边,添加多个带属性的边,为边的属性赋值,迭代输出边及其属性数据
G.add_edge(1, 2, weight=4.7)
G.add_edges_from([(3, 4), (4, 5)], color="red")
G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
G[1][2]["weight"] = 4.7
G.edges[1, 2]["weight"] = 4
G.edges[(1, 2)]["weight"] = 4
list(G.edges(data=True)) #跟上面的G.nodes()类似
注意:G.edges属性是只读的,但是可以更改类似G.edges[1, 2]这种object里的属性,举例:G.edges[1, 2]['weight'] = 4 (对multigraph:MG.edges[u, v, key][name] = value)
添加含weight属性的边 add_weighted_edges_from()函数文档
G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
注意:如果在Graph/DiGraph中添加两次相同的边会仅更新weight;如果在MultiGraph/MultiDiGraph中则会储存多此边
兼容Python语法的捷径
示例代码:
1 in G # check if node in graph
[n for n in G if n < 3] # iterate through nodes
len(G) # number of nodes in graph
节点数量 G.number_of_nodes() 边数量 G.number_of_edges()可视化 nx.draw(G, with_labels = True)节点特征
度数:G.degree[node_id] G.out_degree(node_id) G.in_degree(node_id) 可选参数:weight邻居:
无向图:G.neighbors(node_id) 返回迭代器有向图:
G.successors(node_id)(node_id指向的节点)G.predecessors(node_id)(指向node_id的节点) 另一种访问邻居的方式是通过G.adj(adjacency list,详情见后文) G[node_id] G.adj[node_id] PageRank:nx.pagerank(G) 返回PageRank向量 pagerank()文档 删除数据
删除节点:G.remove_node(n)删除所有节点和边:G.clear() 图表示
adjacency list
G.adj 返回值示例:AdjacencyView({1: {2: {'weight': 0.125}, 3: {'weight': 0.75}}, 2: {1: {'weight': 0.125}, 4: {'weight': 1.2}}, 3: {1: {'weight': 0.75}, 4: {'weight': 0.375}}, 4: {2: {'weight': 1.2}, 3: {'weight': 0.375}}})G.adjacency() 返回一个迭代器,每个元素示例格式:(1, {2: {'weight': 0.125}, 3: {'weight': 0.75}})用类似 G[1] 的方法也可以访问(相当于 G.adj[1]),返回值示例:AtlasView({2: {'weight': 0.125}, 3: {'weight': 0.75}})
3. 除文中已列出的NetworkX官方文档外,其他使用到的参考资料
cs224w课程的colab0
原始文件下载地址我上传到GitHub的文件网址,已添加过部分私人注释 cs224w课程的colab0的参考文件
原始文件下载地址 有过时语法我把这个文件代码改了后跑通了,放到了Google Drive上公开。可以上的如需可资借鉴:“NetworkX.ipynb”的副本 但是没什么新东西,所以下不了也无所谓,我就不放在GitHub之类更容易登入的地方了。如需找我。